Science Spectrum
 Physical Scicice

EVALUATION GUIDE

Welcome to Holt Science Spectrum

Learn to think like a scientist . . .

Houghton Mifflin Harcourt's introductory physical science program integrates chemistry, physics, Earth science, space science, and applied mathematics. The program emphasizes the important connections between these subjects and their cross-disciplinary applications and helps students think analytically, like scientists.

THE HMH ${ }^{\circledR}$ ADVANTAGE

Science Spectrum ${ }^{\circledR}$ addresses the key challenges science teachers face. The program is designed to be easy to follow and easy to use.

- Reading Toolbox helps improve students' reading comprehension and retention through conceptual organization.
- Why It Matters strand makes science relevant to students and piques their interest.
- Inquiry-driven, hands-on learning reinforces the science concepts students are studying.
- Point-of-use Math and Science Skills features help students succeed in science.
- Strong support for differentiated instruction makes Holt Science Spectrum accessible to a diverse student population.

Table of Contents

PHYSICAL SCIENCE CHAPTERS

1 Introduction to Science
2 Matter
3 States of Matter
4 Atoms
5 The Periodic Table
6 The Structure of Matter
7 Chemical Reactions
8 Solutions
9 Acids, Bases, and Salts
10 Nuclear Changes
11 Motion
12 Forces
13 Work and Energy
14 Heat and Temperature
15 Waves
16 Sound and Light
17 Electricity
18 Magnetism

Reading Support Unlocks Science Content

Each section begins with questions that guide students' reading and provide focus. These Key Ideas are emphasized within the running narrative with red icons.

Important points are also reinforced with questions that check students' reading comprehension.

> Reading Check What is the SI unit for power? (See Appendix E for answers to Reading Checks.)

Power

Running up a flight of stairs does not require more work than walking up slowly does, but running is more exhausting than walking. The amount of time that a given amount of work takes is an important factor when you conside machines. The quantity that measures work in is power. > Power is the rate at which work is much work is done in a given amount of tim

| Power
 equation | power $=\frac{\text { work }}{\text { time }}$ |
| :--- | :--- |$\quad P=$

Why It Matters Captures Students' Interest

Why It Matters

Designed more like a magazine layout than a textbook page, Why It Matters features capture students' interest and make science relevant in the context of real-world science, weird science, or science and society. Each chapter and section also begins by emphasizing the relevance of the lesson content to students' everyday lives with Why It Matters explanations.

Newton's second law of motion helps explain how air bags have saved lives.

Inquiry and Hands-On Learning
 Reinforce Key Science Concepts

InquiryLab
 (2) 20 min

Matter and Chemical Reactions

Place about 5 g (1 tsp) of baking soda into a sealable plastic bag. Place about 5 mL (1 tsp) of vinegar into a plastic film canister. Secure the lid. Place the canister into
the bag. Squeeze the air out of the bag, and tightly seal the bag.
Use a balance to determine the total mass of the bag and its contents. Make a note of this value. Open the canister without opening the bag, and allow the vinegar and baking soda to mix. When the reaction has stopped, measure and record the total mass of the bag and its contents.

Questions to Get You Started

1. What evidence shows that a chemical reaction has taken place?
2. Compare the masses of the bag and its contents before and after the reaction. What does this result demonstrate about chemical reactions?

QuickLab

Making Butter

Procedure

(1) Pour 250 mL (about $1 / 2$ pint) of heavy cream into an empty 500 mL container.
2) Add a clean marble, and then seal the container tightly so that it will not leak.
(3) Take turns shaking the container When the cream becomes very thick, you will no longer hear the marble moving.
(4) Record your observations of the substance that formed.

Analysis

1. Cream is an emulsion of fats in water. If joined fat droplets make up butter, what must make up most of the remaining liquid?
2. Why does butter form when you shake the cream?

INQUIRY LABS

Chapters begin with an inquirydriven activity to get students thinking about the science content they are about to study.

Demonstrate

Gravity Fill a round balloon with air and let it rest freely on your open hand. Ask: "What force is keeping this balloon on my hand?" (gravity). Explain to students that all objects in the universe attract each other through the force of gravity. In this case, the balloon and the Earth are attracting each other, but your hand is preventing the balloon's fall. Let the balloon fall to the floor, and draw on the board the path of the balloon. Next, place the balloon on your hand once more and tap the balloon so it moves off your hand horizontally and falls to the floor. Ask: "Does gravity still affect the balloon when it is in motion?" (yes) Draw the path of the balloon on the board again, using arrows to illustrate the forces acting on the balloon. [G Visual

QUICK LABS

Short, hands-on activities in every section highlight key science concepts with few demands on time and equipment.

CHAPTER LABS

End-of-chapter labs focus on experimental skills and test scientific principles through the use of scientific methods. Leveled datasheets for basic, general, and advanced learners are available for every chapter lab.

Additional labs correlated to each chapter are available in the Chapter Resources and include Skills Practice, CBL" Probeware, and Inquiry labs.

Developing Math and Science Skills Is Key to Student Success

Math Skills link mathematics directly to the science being presented. Problem-solving graphics demonstrate the natural links between these two disciplines. Following the solved problem, students are presented with applications that check their understanding.

Math Skills Workbook
Physical Science

Math Skills Workbook provides additional remediation and practice for students who need extra support.

Graphing Motion

Problem

The graph shown here contains data about a runner. What information is being graphed? What can be determined from the graph about the runner's speed? Is the speed constant during the run? Explain.

Solution

(1) Examine the graph. Deter mine what the x-axis and y-axis are to find out what is being graphed.
\qquad
2 Speed is equal to the time graph.

3 A horizontal line indicates zero speed and acceleration. A straight line has a constant speed and zero acceleratio

The x-axis is time, measured in seconds. The y-axis is distance, measured in meters. This is a graph of the runner's distance from some arbitrary starting point as a function of time.

The runner's average speed at various times can be determined from the graph.

The slope of the graph is different at different times The runner's speed is not constant but varies from time to time.

Science Skills

Technology

Math
Scientific Methods

```
Graphing
```

Science Skills in every chapter develop students' science skills in the context of the content that they are studying. Skills focus includes technology, math, scientific methods, and graphing. Additionally, these skills are practiced in the Section and Chapter Reviews.

Graphing Skills

24. Line Graphs An experiment is done using a lab cart. Varying forces are applied to the cart and measured while the cart is accelerating. Each force is applied in the same direction as the movement of the cart. The following data are obtained from the experiment.

Math Skills

7. Calculate the momentum of a 1 kg ball that is moving eastward at $12 \mathrm{~m} / \mathrm{s}$.

Differentiated Instruction Helps You Reach All Your Students

Differentiated Instruction

Special Education Students

Mass Judgments Gather 15 or 20 differentsized, solid-mass items, such as marbles, books, or heavy backpacks. Randomly pair the items. Select two pairs. Ask students which of the two pairs has greater gravitational force. Continue until all pairs are addressed. Then, choose two items and ask a volunteer to choose two other items that have more or less gravitational force. ©S Kinesthetic

Differentiated Instruction

Advanced Learners

Terminal Velocity The acceleration due to gravity is the same for all objects, regardless of weight (disregarding air resistance). Ask students to explain whether terminal velocity for an object falling in air depends on the object's weight. (Yes. Terminal velocity is the point where air resistance equals weight, so if weight changes, a different amount of air resistance will be needed to balance the force of gravity. Therefore, a different terminal velocity will be achieved.)
\square Logical

The Teacher's Edition margin wrap provides strategies for differentiating instruction at point of use for important science content. These strategies are referenced in the Chapter Planning Guide at the beginning of each chapter.

Interactive Reader is a full adapted read of each chapter and makes content from the Student Edition accessible to struggling readers. Reading strategies, directed reading questions, and interactive illustrations are provided to help develop students' reading skills.

Differentiated datasheets, chapter tests, and worksheets are available online so all your students can study the same lesson, but work at their own level.

Preparing All Students for Success

Standardized Test
Prep provides practice and prepares students for high-stakes testing. Students develop their test-taking skills by answering questions that relate to understanding concepts, reading skills, and interpreting graphics.

Technology That Enhances Instruction

Preview the Interactive Online Edition

STUDENT RESOURCES AND eACTIVITIES TABS

Organized in expandable menus for each chapter, students have easy access to a host of materials including:

- Visual Concepts

- Super Summary
- Interactive Concept Maps
- Virtual Investigations
- Audio files for playback and download (organized by section)
- Self-assessment questions

FROM THE TEXTBOOK, CHAPTER 12: FORCES
While browsing this chapter, note the following special features that make Holt McDougal ${ }^{m}$ Interactive Online Edition much more than just an online textbook:

- Pop-up glossary terms, complete with audio pronunciation
- MP3 audio reading of the entire text, available for play or download
- Point-of-use, clickable resources including worksheets and study guide pages and more . . .

TEACHER RESOURCES TAB

Everything is available here, including:

- All printable and editable Chapter Resource Filesincluding Skills Worksheets, Lab Datasheets, and Assessments
- Transparency images
- Spanish resources

To register for your online preview, go to preview.hrw.com and use the sample word SCIENCE08

Program Components

Student Edition

Teacher's Edition
Interactive Online Edition
Holt Science Spectrum Interactive Reader

TECHNOLOGY

Interactive Online Edition
Chapter Resources
Online Transparencies
Student Edition Audio, both English and Spanish
Visual Concepts (Shockwave ${ }^{\circledR}$ required)
Virtual Investigations (Adobe Flash ${ }^{\circledR}$ required) Lab Videos (QuickTime ${ }^{\circledR}$ Plugin required)

TEACHING RESOURCES

Chapter Resources

- Science Skills
- Math Skills
- Concept Review
- Cross-Disciplinary Connections
- Datasheets for In-Text Labs
- Skills Practice Labs
- CBL Probeware Labs
- Chapter Tests A and B
- Pretest
- Quizzes
- Standardized Test Practice with Guided Reading Development
- Lab Notes and Answers
- Answer Key for Skills Worksheets, Assessments, and Activities
- Teaching Transparency List

Math Skills Workbook
Study Guide
Teaching Transparencies
Holt Science Laboratory Manager's Professional Reference

Contact your HMH Account Executive hmhco.force.com/replocator

